Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Front Plant Sci ; 14: 1303022, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143583

RESUMO

Introduction: Functional trait-based approaches are extensively applied to the study of mechanisms governing community assembly along environmental gradients. These approaches have been classically based on studying differences in mean values among species, but there is increasing recognition that alternative metrics of trait distributions should be considered to decipher the mechanisms determining community assembly and species coexistence. Under this framework, the main aim of this study is to unravel the effects of environmental conditions as drivers of plant community assembly in sub-Mediterranean ecotones. Methods: We set 60 plots in six plant communities of a sub-Mediterranean forest in Central Spain, and measured key above- and belowground functional traits in 411 individuals belonging to 19 species, along with abiotic variables. We calculated community-weighted mean (CWM), skewness (CWS) and kurtosis (CWK) of three plant dimensions, and used maximum likelihood techniques to analyze how variation in these functional community traits was driven by abiotic factors. Additionally, we estimated the relative contribution of intraspecific trait variability and species turnover to variation in CWM. Results and discussion: The first three axes of variation of the principal component analyses were related to three main plant ecological dimensions: Leaf Economics Spectrum, Root Economics Spectrum and plant hydraulic architecture, respectively. Type of community was the most important factor determining differences in the functional structure among communities, as compared to the role of abiotic variables. We found strong differences among communities in their CWMs in line with their biogeographic origin (Eurosiberian vs Mediterranean), while differences in CWS and CWK indicate different trends in the functional structure among communities and the coexistence of different functional strategies, respectively. Moreover, changes in functional composition were primarily due to intraspecific variability. Conclusion: We observed a high number of strategies in the forest with the different communities spreading along the acquisitive-conservative axis of resource-use, partly matching their Eurosiberian-Mediterranean nature, respectively. Intraspecific trait variability, rather than species turnover, stood as the most relevant factor when analyzing functional changes and assembly patterns among communities. Altogether, our data support the notion that ecotones are ecosystems where relatively minor environmental shifts may result in changes in plant and functional composition.

2.
Ann Bot ; 132(3): 471-484, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37724864

RESUMO

BACKGROUND AND AIMS: Submediterranean areas are rich ecotones, where slight modifications in environmental conditions can lead to substantial changes in the composition of plant communities. They thus offer an ideal scenario to examine plant community assembly. In this study, we followed a trait-based approach including intraspecific variability to elucidate (1) the relationship between niche occupancy components and species richness, (2) the processes governing the assembly of these communities and (3) the contribution of intraspecific trait variability in shaping the functional trait space. METHODS: We measured eight morphological and chemical traits in 405 individuals across 60 plots located in different forest communities (Mediterranean, Eurosiberian and Mixed) coexisting within a submediterranean ecosystem in central Spain. We calculated three niche occupancy components related to Hutchinson's n-dimensional hypervolumes: the total functional volume of the community, the functional overlap between species within the community and the average functional volume per species, and then used null models to explore the relative importance of habitat filtering, limiting similarity and intraspecific variability as assembly patterns. KEY RESULTS: Both habitat filtering and niche differentiation drive the community assembly of Mediterranean communities, whereas limiting similarity and hierarchical competition shape Eurosiberian communities. Intraspecific responses were mostly explained by shifts in species niches across the functional space (changes in the position of the centroids of hypervolumes). CONCLUSIONS: Different assembly mechanisms govern the structure of Mediterranean, Eurosiberian and Mixed plant communities. Combining niche occupancy components with a null model approach at different spatial scales offers new insights into the mechanisms driving plant community assembly. Consideration of intraspecific variability is key for understanding the mechanisms governing species coexistence in species-rich ecotones.


Assuntos
Ecossistema , Plantas , Humanos , Florestas , Fenótipo , Ocupações
3.
Front Health Serv ; 3: 1174594, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600925

RESUMO

Background: The Mosaic project is a socio-health integration model that promotes the personal recovery of people with severe mental illness in a territory of Central Catalonia: the Bages region. The recovery approach in mental health care promotes meaningful activities and social inclusion for people with mental health disorders. The aim of this study is to examine the relationship between the level of meaningful activities and other factors associated with the mental health recovery model. Methods: A cross-sectional design was used. Participants (n = 59) signed an informed consent and completed the following standardized instruments: Engagement in Meaningful Activities Survey; The Connor-Davidson Resilience Scale; Hert Hope Scale; and Recovery Assessment Scale. Results: A Pearson correlation test was performed between the level of meaningful activities and life satisfaction, resilience, hope, and recovery. These data indicate that the amount of meaningful activities are strongly associated with variables related to the personal recovery process from mental health problems. Conclusions: The integration process of MOSAIC confirms the need to accompany the recovery processes through significant occupations.

5.
New Phytol ; 235(4): 1351-1364, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35582952

RESUMO

The least-cost economic theory of photosynthesis shows that water and nitrogen are mutually substitutable resources to achieve a given carbon gain. However, vegetation in the Sahel has to cope with the dual challenge imposed by drought and nutrient-poor soils. We addressed how variation in leaf nitrogen per area (Narea ) modulates leaf oxygen and carbon isotopic composition (δ18 O, δ13 C), as proxies of stomatal conductance and water-use efficiency, across 34 Sahelian woody species. Dryland species exhibited diverging leaf δ18 O and δ13 C values, indicating large interspecific variation in time-integrated stomatal conductance and water-use efficiency. Structural equation modeling revealed that leaf Narea is a pivotal trait linked to multiple water-use traits. Leaf Narea was positively linked to both δ18 O and δ13 C, suggesting higher carboxylation capacity and tighter stomatal regulation of transpiration in N-rich species, which allows them to achieve higher water-use efficiency and more conservative water use. These adaptations represent a key physiological advantage of N-rich species, such as legumes, that could contribute to their dominance across many dryland regions. This is the first report of a robust mechanistic link between leaf Narea and δ18 O in dryland vegetation that is consistent with core principles of plant physiology.


Assuntos
Nitrogênio , Árvores , Isótopos de Carbono , Fotossíntese/fisiologia , Folhas de Planta , Transpiração Vegetal , Água
6.
Front Psychiatry ; 13: 791724, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463525

RESUMO

Introduction: A mental health peer support program was implemented at two reference institutions in Central Catalonia. The program culturally and contextually adapted successful international projects by training people with experience of mental health problems and ensuring their employment in multidisciplinary health care teams. This study explores the influence of peer interventions in mental health on the three groups of participants: peer support workers, service users, and mental health professionals. Methods: A mixed observational method design included pre-, inter-, and post-experimental components and a qualitative description of the impact. The triangulation of the qualitative and quantitative findings showed its coherence and facilitated the understanding of the results. Outcomes and measures were as follows: self-stigma (Self-Stigma Questionnaire); life satisfaction (Scale of Satisfaction with Life); participation in relevant activities (Engagement in Meaningful Activities Survey); personal recovery (Scale-revised Recovery Assessment); occupational performance (Canadian Occupational Performance Measure); and attitudes toward mental illness (Community Attitudes toward Mental Illness). Results: The program showed beneficial effects on peer support workers' (PSW) perceptions of occupational performance, specifically on the ability to find work (p = 0.038), work as a peer support worker (p = 0.016), give to the community (p = 0.011), and satisfaction in the ability to find work (p = 0.031). The assessment made by the three groups of participants was very positive: the PSWs showed an increase in self-esteem and a feeling of usefulness; users of the service described the experience as a source of hope and optimism in their recovery process; and professionals described the program as a positive step in their professional growth. Discussion: The peer-to-peer strategy is a source of hope in the personal recovery process, providing meaning to life for the PSWs while providing an extra source of support to service users in their process of personal recovery. The results offer us lines of improvement for future implementations. PSW's final emphasis has us reflecting on improvements to enhance their own wellness in mental health care services. The findings show the importance of working on life projects and their impact on the recovery process.

8.
Chem Biodivers ; 19(2): e202100618, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34964245

RESUMO

Two nor-diterpenes, 9,11-dihydrogracilin A (1) and the previously unreported 9,11-dihydrogracillinone A (2), were isolated from the sponge Dendrilla antarctica. The sponge was collected by trawling at a depth of 49 m, from the research vessel Puerto Deseado, near the coast of Tierra del Fuego, farther north than the reported habitat for this species. Since these compounds were particularly abundant and the sponge was free from epibionts, both 1 and 2 were included in soluble-matrix paints and tested for antifouling activity in the ocean. The results obtained from these experiments clearly indicated a potent antifouling activity for both compounds against a variety of colonizing organisms, and established a probable role as natural antifoulants for these abundant secondary metabolites and other structurally related compounds previously isolated from Dendrilla spp.


Assuntos
Incrustação Biológica , Diterpenos , Poríferos , Animais , Regiões Antárticas , Incrustação Biológica/prevenção & controle , Ecossistema
9.
Front Plant Sci ; 12: 773118, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34887894

RESUMO

Extensive research efforts are devoted to understand fine root trait variation and to confirm the existence of a belowground root economics spectrum (RES) from acquisitive to conservative root strategies that is analogous to the leaf economics spectrum (LES). The economics spectrum implies a trade-off between maximizing resource acquisition and productivity or maximizing resource conservation and longevity; however, this theoretical framework still remains controversial for roots. We compiled a database of 320 Mediterranean woody and herbaceous species to critically assess if the classic economics spectrum theory can be broadly extended to roots. Fine roots displayed a wide diversity of forms and properties in Mediterranean vegetation, resulting in a multidimensional trait space. The main trend of variation in this multidimensional root space is analogous to the main axis of LES, while the second trend of variation is partially determined by an anatomical trade-off between tissue density and diameter. Specific root area (SRA) is the main trait explaining species distribution along the RES, regardless of the selected traits. We advocate for the need to unify and standardize the criteria and approaches used within the economics framework between leaves and roots, for the sake of theoretical consistency.

10.
Sci Adv ; 7(41): eabj0127, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34623915

RESUMO

Phonon polaritons (PhPs)­light coupled to lattice vibrations­with in-plane hyperbolic dispersion exhibit ray-like propagation with large wave vectors and enhanced density of optical states along certain directions on a surface. As such, they have raised a surge of interest, promising unprecedented manipulation of infrared light at the nanoscale in a planar circuitry. Here, we demonstrate focusing of in-plane hyperbolic PhPs propagating along thin slabs of α-MoO3. To that end, we developed metallic nanoantennas of convex geometries for both efficient launching and focusing of the polaritons. The foci obtained exhibit enhanced near-field confinement and absorption compared to foci produced by in-plane isotropic PhPs. Foci sizes as small as λp/4.5 = λ0/50 were achieved (λp is the polariton wavelength and λ0 is the photon wavelength). Focusing of in-plane hyperbolic polaritons introduces a first and most basic building block developing planar polariton optics using in-plane anisotropic van der Waals materials.

11.
New Phytol ; 232(3): 1399-1413, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34342894

RESUMO

The aboveground impacts of climate change receive extensive research attention, but climate change could also alter belowground processes such as the delicate balance between free-living fungal decomposers and nutrient-scavenging mycorrhizal fungi that can inhibit decomposition through a mechanism called the Gadgil effect. We investigated how climate change-induced reductions in plant survival, photosynthesis and productivity alter soil fungal community composition in a mixed arbuscular/ectomycorrhizal (AM/EM) semiarid shrubland exposed to experimental warming (W) and/or rainfall reduction (RR). We hypothesised that increased EM host plant mortality under a warmer and drier climate might decrease ectomycorrhizal fungal (EMF) abundance, thereby favouring the proliferation and activity of fungal saprotrophs. The relative abundance of EMF sequences decreased by 57.5% under W+RR, which was accompanied by reductions in the activity of hydrolytic enzymes involved in the acquisition of organic-bound nutrients by EMF and their host plants. W+RR thereby created an enhanced potential for soil organic matter (SOM) breakdown and nitrogen mineralisation by decomposers, as revealed by 127-190% increases in dissolved organic carbon and nitrogen, respectively, and decreasing SOM content in soil. Climate aridification impacts on vegetation can cascade belowground through shifts in fungal guild structure that alter ecosystem biogeochemistry and accelerate SOM decomposition by reducing the Gadgil effect.


Assuntos
Micorrizas , Carbono , Ecossistema , Fungos , Nitrogênio , Solo , Microbiologia do Solo
12.
Nat Mater ; 20(8): 1106-1112, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34083775

RESUMO

Spin qubits are considered to be among the most promising candidates for building a quantum processor. Group IV hole spin qubits are particularly interesting owing to their ease of operation and compatibility with Si technology. In addition, Ge offers the option for monolithic superconductor-semiconductor integration. Here, we demonstrate a hole spin qubit operating at fields below 10 mT, the critical field of Al, by exploiting the large out-of-plane hole g-factors in planar Ge and by encoding the qubit into the singlet-triplet states of a double quantum dot. We observe electrically controlled g-factor difference-driven and exchange-driven rotations with tunable frequencies exceeding 100 MHz and dephasing times of 1 µs, which we extend beyond 150 µs using echo techniques. These results demonstrate that Ge hole singlet-triplet qubits are competing with state-of-the-art GaAs and Si singlet-triplet qubits. In addition, their rotation frequencies and coherence are comparable with those of Ge single spin qubits, but singlet-triplet qubits can be operated at much lower fields, emphasizing their potential for on-chip integration with superconducting technologies.

13.
New Phytol ; 230(4): 1378-1393, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33550582

RESUMO

Warming-induced desiccation of the fertile topsoil layer could lead to decreased nutrient diffusion, mobility, mineralization and uptake by roots. Increased vertical decoupling between nutrients in topsoil and water availability in subsoil/bedrock layers under warming could thereby reduce cumulative nutrient uptake over the growing season. We used a Mediterranean semiarid shrubland as model system to assess the impacts of warming-induced topsoil desiccation on plant water- and nutrient-use patterns. A 6 yr manipulative field experiment examined the effects of warming (2.5°C), rainfall reduction (30%) and their combination on soil resource utilization by Helianthemum squamatum shrubs. A drier fertile topsoil ('growth pool') under warming led to greater proportional utilization of water from deeper, wetter, but less fertile subsoil/bedrock layers ('maintenance pool') by plants. This was linked to decreased cumulative nutrient uptake, increased nonstomatal (nutritional) limitation of photosynthesis and reduced water-use efficiency, above-ground biomass growth and drought survival. Whereas a shift to greater utilization of water stored in deep subsoil/bedrock may buffer the negative impact of warming-induced topsoil desiccation on transpiration, this plastic response cannot compensate for the associated reduction in cumulative nutrient uptake and carbon assimilation, which may compromise the capacity of plants to adjust to a warmer and drier climate.


Assuntos
Solo , Água , Carbono , Clima , Nutrientes
14.
Nanomaterials (Basel) ; 11(1)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430225

RESUMO

Layered materials in which individual atomic layers are bonded by weak van der Waals forces (vdW materials) constitute one of the most prominent platforms for materials research. Particularly, polar vdW crystals, such as hexagonal boron nitride (h-BN), alpha-molybdenum trioxide (α-MoO3) or alpha-vanadium pentoxide (α-V2O5), have received significant attention in nano-optics, since they support phonon polaritons (PhPs)-light coupled to lattice vibrations- with strong electromagnetic confinement and low optical losses. Recently, correlative far- and near-field studies of α-MoO3 have been demonstrated as an effective strategy to accurately extract the permittivity of this material. Here, we use this accurately characterized and low-loss polaritonic material to sense its local dielectric environment, namely silica (SiO2), one of the most widespread substrates in nanotechnology. By studying the propagation of PhPs on α-MoO3 flakes with different thicknesses laying on SiO2 substrates via near-field microscopy (s-SNOM), we extract locally the infrared permittivity of SiO2. Our work reveals PhPs nanoimaging as a versatile method for the quantitative characterization of the local optical properties of dielectric substrates, crucial for understanding and predicting the response of nanomaterials and for the future scalability of integrated nanophotonic devices.

15.
New Phytol ; 232(3): 1123-1158, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33159479

RESUMO

The effects of plants on the biosphere, atmosphere and geosphere are key determinants of terrestrial ecosystem functioning. However, despite substantial progress made regarding plant belowground components, we are still only beginning to explore the complex relationships between root traits and functions. Drawing on the literature in plant physiology, ecophysiology, ecology, agronomy and soil science, we reviewed 24 aspects of plant and ecosystem functioning and their relationships with a number of root system traits, including aspects of architecture, physiology, morphology, anatomy, chemistry, biomechanics and biotic interactions. Based on this assessment, we critically evaluated the current strengths and gaps in our knowledge, and identify future research challenges in the field of root ecology. Most importantly, we found that belowground traits with the broadest importance in plant and ecosystem functioning are not those most commonly measured. Also, the estimation of trait relative importance for functioning requires us to consider a more comprehensive range of functionally relevant traits from a diverse range of species, across environments and over time series. We also advocate that establishing causal hierarchical links among root traits will provide a hypothesis-based framework to identify the most parsimonious sets of traits with the strongest links on functions, and to link genotypes to plant and ecosystem functioning.


Assuntos
Ecossistema , Plantas , Atmosfera , Ecologia , Fenótipo
16.
Nano Lett ; 20(7): 5323-5329, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32530634

RESUMO

Recent discoveries have shown that, when two layers of van der Waals (vdW) materials are superimposed with a relative twist angle between them, the electronic properties of the coupled system can be dramatically altered. Here, we demonstrate that a similar concept can be extended to the optics realm, particularly to propagating phonon polaritons-hybrid light-matter interactions. To do this, we fabricate stacks composed of two twisted slabs of a vdW crystal (α-MoO3) supporting anisotropic phonon polaritons (PhPs), and image the propagation of the latter when launched by localized sources. Our images reveal that, under a critical angle, the PhPs isofrequency curve undergoes a topological transition, in which the propagation of PhPs is strongly guided (canalization regime) along predetermined directions without geometric spreading. These results demonstrate a new degree of freedom (twist angle) for controlling the propagation of polaritons at the nanoscale with potential for nanoimaging, (bio)-sensing, or heat management.

17.
Nat Mater ; 19(9): 964-968, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32284598

RESUMO

Phonon polaritons-light coupled to lattice vibrations-in polar van der Waals crystals are promising candidates for controlling the flow of energy on the nanoscale due to their strong field confinement, anisotropic propagation and ultra-long lifetime in the picosecond range1-5. However, the lack of tunability of their narrow and material-specific spectral range-the Reststrahlen band-severely limits their technological implementation. Here, we demonstrate that intercalation of Na atoms in the van der Waals semiconductor α-V2O5 enables a broad spectral shift of Reststrahlen bands, and that the phonon polaritons excited show ultra-low losses (lifetime of 4 ± 1 ps), similar to phonon polaritons in a non-intercalated crystal (lifetime of 6 ± 1 ps). We expect our intercalation method to be applicable to other van der Waals crystals, opening the door for the use of phonon polaritons in broad spectral bands in the mid-infrared domain.

18.
Glob Chang Biol ; 26(3): 1795-1807, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31701634

RESUMO

Nutrient resorption is the process whereby plants recover nutrients from senescing leaves and reallocate them to storage structures or newer tissues. Elemental resorption of foliar N and P has been shown to respond to temperature and precipitation, but we know remarkably little about the influence of warming and drought on the resorption of these and other essential plant macro- and micronutrients, which could alter the ability of species to recycle their nutrients. We conducted a 5 year manipulative field study to simulate predicted climate change conditions and studied the effects of warming (W), rainfall reduction (RR), and their combination (W+RR) on nutrient resorption efficiency in five coexisting shrub species in a semiarid shrubland. Both mature and senesced leaves showed significant reductions in their nutrient contents and an altered stoichiometry in response to climate change conditions. Warming (W, W+RR) reduced mature leaf N, K, Ca, S, Fe, and Zn and senesced leaf N, Ca, Mg, S, Fe, and Zn contents relative to ambient temperature conditions. Warming increased mature leaf C/N ratios and decreased N/P and C/P ratios and increased senesced leaf C/N and C/P ratios. Furthermore, W and W+RR reduced nutrient resorption efficiencies for N (6.3%), K (19.8%), S (70.9%) and increased Ca and Fe accumulation in senesced leaves (440% and 35.7%, respectively) relative to the control treatment. Rainfall reduction decreased the resorption efficiencies of N (6.7%), S (51%), and Zn (46%). Reductions in nutrient resorption efficiencies with warming and/or rainfall reduction were rather uniform and consistent across species. The negative impacts of warming and rainfall reduction on foliar nutrient resorption efficiency will likely cause an impairment of plant nutrient budgets and fitness across coexisting native shrubs in this nutrient-poor habitat, with probable implications for key ecosystem functions such as reductions in nutrient retention in vegetation, litter decomposition, and nutrient cycling rates.


Assuntos
Mudança Climática , Ecossistema , Nitrogênio , Nutrientes , Fósforo , Folhas de Planta
19.
J Ecol ; 106(3): 960-976, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-30078910

RESUMO

Warmer and drier conditions associated with ongoing climate change will increase abiotic stress for plants and mycorrhizal fungi in drylands worldwide, thereby potentially reducing vegetation cover and productivity and increasing the risk of land degradation and desertification. Rhizosphere microbial interactions and feedbacks are critical processes that could either mitigate or aggravate the vulnerability of dryland vegetation to forecasted climate change.We conducted a four-year manipulative study in a semiarid shrubland in the Iberian Peninsula to assess the effects of warming (~2.5ºC; W), rainfall reduction (~30%; RR) and their combination (W+RR) on the performance of native shrubs (Helianthemum squamatum) and their associated mycorrhizal fungi.Warming (W and W+RR) decreased the net photosynthetic rates of H. squamatum shrubs by ~31% despite concurrent increases in stomatal conductance (~33%), leading to sharp decreases (~50%) in water use efficiency. Warming also advanced growth phenology, decreased leaf nitrogen and phosphorus contents per unit area, reduced shoot biomass production by ~36% and decreased survival during a dry year in both W and W+RR plants. Plants under RR showed more moderate decreases (~10-20%) in photosynthesis, stomatal conductance and shoot growth.Warming, RR and W+RR altered ectomycorrhizal fungal (EMF) community structure and drastically reduced the relative abundance of EMF sequences obtained by high-throughput sequencing, a response associated with decreases in the leaf nitrogen, phosphorus and dry matter contents of their host plants. In contrast to EMF, the community structure and relative sequence abundances of other non-mycorrhizal fungal guilds were not significantly affected by the climate manipulation treatments.Synthesis: Our findings highlight the vulnerability of both native plants and their symbiotic mycorrhizal fungi to climate warming and drying in semiarid shrublands, and point to the importance of a deeper understanding of plant-soil feedbacks to predict dryland vegetation responses to forecasted aridification. The interdependent responses of plants and ectomycorrhizal fungi to warming and rainfall reduction may lead to a detrimental feedback loop on vegetation productivity and nutrient pool size, which could amplify the adverse impacts of forecasted climate change on ecosystem functioning in EMF-dominated drylands.

20.
Micron ; 113: 83-90, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30007860

RESUMO

Crystal defects present in GaAs nanocrystals ∼15-50 nm in diameter and grown by metal organic vapor phase epitaxy on top of two different nanopatterned Si(001) substrates (nanopillars and nanotips with ∼40-80 nm openings embedded in a SiO2 matrix) and on a planar substrate, have been investigated by means of atomic-resolution aberration-corrected scanning transmission electron microscopy. Conditions of their formation are discussed. The defect analysis of the three GaAs/Si systems reveals a higher defect density in the GaAs crystals grown on nanopillars as compared to those grown on nanotips and the planar substrate, possibly concomitant to the atomic-scale irregularities identified at the patterned Si(001) nanopillars. It is concluded that the misfit strain in the GaAs nanocrystals is fully plastically relaxed while no noticeable substrate compliance effects are observed on any of the studied substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA